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Let U be a finite dimensional linear space of continuously differentiable
functions, containing constants. We prove that U’, the space of derivatives, is a
WT-space iff U has a basis {u,,..., u,_,} that is a complete WT-system with u, = 1.

In this article we consider the problem of determining when the space of
derivatives of a WT-space is itself a WT-space. This problem is solved by
employing a concept introduced by Zielke [3, Chap. 8], that of oscillation
spaces, which we define subsequently.

Let U be a linear space of real-valued functions defined on a real interval.
We call U a WT-space (for “weak Tchebysheff) if U has a basis, a WT-
system, {uy,..., u,_,} such that for all x, < --- <x,_,, det{u,(x;)}};2,>0. U
is a WT-space iff no element has more than n — 1 sign changes, n being the
dimension of U. If det{u,(x;)}{;., is positive for all x, < --- < x,_, then we
call {ug,..., u,_,} a T-system. For these and related notions see [3].

A standard technique in dealing with continuous WT-systems is the
method of smoothing [2, p. 40]. For continuous u we form the integral

u(t) =

1 b —(t—x)/282
e u(x) dx, e>0. (1)
27E “a

Then u°— u uniformly in (a, b) as € | 0. By extrapolating u linearly outside
[a, b] and performing the integral over a slightly larger interval we can get
uniform convergence of «° in all of [a, b]. The usefulness of this technique
lies in the fact that if {u,,...,u,_,} is a WT-system then {u(,..,u,_,}isa T-
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system. Thus every continuous WT-system can be uniformly approximated
by T-systems of analytic functions.

If u, > 0 then u; are bounded away from zero for € > 0. If uy= 1 then we
may define for € > 0

vi=1, vi=uju; (i=1ton—1). (2)

One easily checks that v¢— u; uniformly as ¢ | 0, that is, if u, =1 then we
may approximate {Ug,...,¥,_,} by T-systems {v;,.., vi_,} for which v;=1
for all € > 0.

(3) DEFINITION.  {ug,..., u,_;} is called a complete (W)T-system if
{ttgss ;) is @ (W)T-system for i=0ton— 1.

If {ug,...,u,_,} is a complete WT-system then {ug,...,u; ,} defined as in
(1) forms a complete T-system.

(4) DerinrtioN.  We will call a (weak) Markov basis a complete (W)T-
system {ug,..., 4, _,} with u, = 1.

(5) DerFINITION. A function f is said to have an oscillation of length k if
there are points x; < --- < x, and € = +1 such that

e=D'(flxin ) —Sx)>0  (i=1tok—1)

(6) DEFINITION. An n-dimensional linear space U of real-valued
functions is called an oscillation space if no u € U has an oscillation of
length n + 1.

The following theorem characterizes 7-spaces that are oscillation spaces.

(7) THEOREM (3, Theorem 8.8]. If U is a T-space with constants then U
is an oscillation space iff U has a Markov basis.

In fact, one can also prove the following theorem.

(8) THEOREM. Every continuous oscillation space on |a,b| contains
constanis.

Proof. Let U be a continuous oscillation space; then U is clearly a WT-
space. If 1 & U then by [1, Theorem 1] there is an element u € U such that
1 — u alternates n times—in other words, there are points x, < --- < x,, and
e==+1 such that &(—1)(1 —u(x;)) = maxy,, |1 —u(x)] (=0 to n). But
then « has an oscillation of length # + 1 in Xx,..., Xx,, @ contradiction. Hence
we must conclude that 1€ U. i

640°38/2.7



190 D. ZWICK

(9) THEOREM (3, Theorem 8.3]. Every n-dimensional oscillation space
with constants contains an (n— 1)-dimensional oscillation space with
constants.

(10) CoroLLARY. Every continuous oscillation space has a weak
Markov basis.

Proof. This follows directly from the previous two theorems. 1

We can now prove our first characterization theorem, about oscillation
spaces.

(11) THEOREM. A finite dimensional linear space of continuous, real-
valued functions is an oscillation space iff it has a weak Markov basis.

Proof. If U is an oscillation space then (10) implies that U has a weak
Markov basis. Conversely, suppose that U has such a basis. We may then
smooth and form the function v} as in (2). For each ¢ > 0, {v;,...,v;_,} is
then a Markov basis and v{— u, uniformly, where {u,,..,u4,_,} is our
original weak Markov basis for U. If some u € U had an oscillation of length
n + 1 then so too would u® for ¢ > 0 sufficiently small. But this contradicts
(7); hence U is an oscillation space.

(12) THEOREM. Let U be a (finite dimensional linear space of
continuously differentiable functions, which contains constants. Then U’, the
space of derivatives, is a WT-space iff U is an oscillation space.

Proof. Assume that U has dimension n; since U contains constants U’
has dimension n — 1. Now suppose that U’ is a WT-space. If some u€ U
had an oscillation of length »n + 1, say, x, < --+ < x,,,, such that

(1) (u(x;, 1) —u(x)) >0 (i=1to n),

then by the mean-value theorem we could find points x; < #; < x;,; such that
(=1) u'(n;)>0 (i=1 to n). Thus u’ has n — 1 sign changes, contradicting
the assumption that U’ is a WT-space. Conversely, suppose that some
u' €U’ has n—1 sign changes. Then there are points x, < --- < x,, such
that, for some ¢ = +1,

e(—D)'u'(x)>0 in (x;_,,x)(i=1ton)
and u’(x)# 0 on a subinterval of each (x;_,, x;). Hence the function

u() =u(xo) + [ WO dte U
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has an oscillation of length n+ 1 at x,,..., x,, so that U is not an oscillation
space. This completes the theorem. [

(13) CoroLLARY. Let U be as in (12). Then the following are
equivalent.

(1) U is an oscillation space,
(2) U has a weak Markov basis,
(3) U’ is a WT-space.

We close with an examf)le.

(14) ExampLE. The following example, from Zielke 3, p. 44], is of a T-
space with no Markov basis. It can be shown [4] that in this case no weak
Markov basis exists either. We demonstrate that the space of derivatives is
not a WT-space.

Let uy)=1, u,()=t(1—1t) and u,(t)=(1—1)(t*—1). Then
U=splug,u,,u,} is a T-space (and hence a WT-space) on |1, 1]. Zielke
proves that U contains no 2-dimensional 7-space and hence has no Markov
basis. We have U’ = {u!, uj}, where uj(t)=1—2¢, uj(t) = (1 — t)(1 + 3¢). If
we choose ¢, =0, ¢, = 1/2 then we get for u; and u;

1 2 1 0
U ’ = =5/4 >0,
() /1 5/4’ /4>

while the choice t,=—1, t,=1 yields | i “3| =—4 < 0. Since the deter-
minant is a continuous function of ¢, and ¢,, it remains negative for
t,=—1+4+¢t,=1—¢ for small ¢ > 0. Hence U’ has no basis that is a WT-
system on (—1, 1); that is, U’ is not a WT-space on (— 1,1). §
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