Characterization of WT-Spaces Whose Derivatives Form a $W T$-Space*

D. ZWINK^{\dagger}
Institut für Angewandte Mathematik der Universität Bonn, 5300 Bonn. West Germany
Communicated by Oved Shisha

Received February 11, 1982

Abstract

Let U be a finite dimensional linear space of continuously differentiable functions, containing constants. We prove that U^{\prime}, the space of derivatives, is a $W T$-space iff U has a basis $\left\{u_{0}, \ldots, u_{n-1}\right\}$ that is a complete $W T$-system with $u_{0} \equiv 1$.

In this article we consider the problem of determining when the space of derivatives of a $W T$-space is itself a $W T$-space. This problem is solved by employing a concept introduced by Zielke [3, Chap. 8], that of oscillation spaces, which we define subsequently.

Let U be a linear space of real-valued functions defined on a real interval. We call U a $W T$-space (for "weak Tchebysheff") if U has a basis, a $W T$ system, $\left\{u_{0}, \ldots, u_{n-1}\right\}$ such that for all $x_{0}<\cdots<x_{n-1}, \operatorname{det}\left\{u_{i}\left(x_{j}\right)\right\}_{i, j=0}^{n-1} \geqslant 0 . U$ is a $W T$-space iff no element has more than $n-1$ sign changes, n being the dimension of U. If $\operatorname{det}\left\{u_{i}\left(x_{j}\right)\right\}_{i, j=0}^{n-1}$ is positive for all $x_{0}<\cdots<x_{n-1}$ then we call $\left\{u_{0}, \ldots, u_{n-1}\right\}$ a T-system. For these and related notions see [3].

A standard technique in dealing with continuous $W T$-systems is the method of smoothing [2, p. 40]. For continuous u we form the integral

$$
\begin{equation*}
u^{\varepsilon}(t)=\frac{1}{\sqrt{2 \pi} \varepsilon} \int_{a}^{b} e^{-(t-x)^{2} / 2 \varepsilon^{2}} u(x) d x, \quad \varepsilon>0 \tag{1}
\end{equation*}
$$

Then $u^{\varepsilon} \rightarrow u$ uniformly in (a, b) as $\varepsilon \downarrow 0$. By extrapolating u linearly outside $[a, b]$ and performing the integral over a slightly larger interval we can get uniform convergence of u^{ε} in all of $[a, b]$. The usefulness of this technique lies in the fact that if $\left\{u_{0}, \ldots, u_{n-1}\right\}$ is a $W T$-system then $\left\{u_{0}^{\ell}, \ldots, u_{n-1}^{\ell}\right\}$ is a T -

[^0]system. Thus every continuous $W T$-system can be uniformly approximated by T-systems of analytic functions.

If $u_{0}>0$ then u_{0}^{ε} are bounded away from zero for $\varepsilon \geqslant 0$. If $u_{0} \equiv 1$ then we may define for $\varepsilon>0$

$$
\begin{equation*}
v_{0}^{\varepsilon} \equiv 1, \quad v_{i}^{\varepsilon}=u_{i}^{\varepsilon} / u_{0}^{\varepsilon} \quad(i=1 \text { to } n-1) \tag{2}
\end{equation*}
$$

One easily checks that $v_{i}^{\varepsilon} \rightarrow u_{i}$ uniformly as $\varepsilon \downarrow 0$, that is, if $u_{0} \equiv 1$ then we may approximate $\left\{u_{0}, \ldots, u_{n-1}\right\}$ by T-systems $\left\{v_{0}^{\varepsilon}, \ldots, v_{n-1}^{\varepsilon}\right\}$ for which $v_{0}^{\varepsilon} \equiv 1$ for all $\varepsilon>0$.
(3) Definition. $\left\{u_{0}, \ldots, u_{n-1}\right\}$ is called a complete (W)T-system if $\left\{u_{0}, \ldots, u_{i}\right\}$ is a $(W) T$-system for $i=0$ to $n-1$.

If $\left\{u_{0}, \ldots, u_{n-1}\right\}$ is a complete $W T$-system then $\left\{u_{0}^{\varepsilon}, \ldots, u_{n-1}^{\varepsilon}\right\}$ defined as in (1) forms a complete T-system.
(4) Definition. We will call a (weak) Markov basis a complete (W)Tsystem $\left\{u_{0}, \ldots, u_{n-1}\right\}$ with $u_{0} \equiv 1$.
(5) Definition. A function f is said to have an oscillation of length k if there are points $x_{1}<\cdots<x_{k}$ and $\varepsilon= \pm 1$ such that

$$
\varepsilon(-1)^{i}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)>0 \quad(i=1 \text { to } k-1)
$$

(6) Definition. An n-dimensional linear space U of real-valued functions is called an oscillation space if no $u \in U$ has an oscillation of length $n+1$.

The following theorem characterizes T-spaces that are oscillation spaces.
(7) Theorem [3, Theorem 8.8]. If U is a T-space with constants then U is an oscillation space iff U has a Markov basis.

In fact, one can also prove the following theorem.
(8) Theorem. Every continuous oscillation space on $[a, b]$ contains constants.

Proof. Let U be a continuous oscillation space; then U is clearly a $W T$ space. If $1 \notin U$ then by $[1$, Theorem 1] there is an element $u \in U$ such that $1-u$ alternates n times-in other words, there are points $x_{0}<\cdots<x_{n}$ and $\varepsilon= \pm 1$ such that $\varepsilon(-1)^{i}\left(1-u\left(x_{i}\right)\right)=\max _{[a, b]}|1-u(x)|(i=0$ to $n)$. But then u has an oscillation of length $n+1$ in x_{0}, \ldots, x_{n}, a contradiction. Hence we must conclude that $1 \in U$.
(9) Theorem [3, Theorem 8.3]. Every n-dimensional oscillation space with constants contains an ($n-1$)-dimensional oscillation space with constants.
(10) Corollary. Every continuous oscillation space has a weak Markov basis.

Proof. This follows directly from the previous two theorems.
We can now prove our first characterization theorem, about oscillation spaces.
(11) Theorem. A finite dimensional linear space of continuous, realvalued functions is an oscillation space iff it has a weak Markov basis.

Proof. If U is an oscillation space then (10) implies that U has a weak Markov basis. Conversely, suppose that U has such a basis. We may then smooth and form the function v_{i}^{e} as in (2). For each $\varepsilon>0,\left\{v_{0}^{\varepsilon}, \ldots, v_{n-1}^{e}\right\}$ is then a Markov basis and $v_{i}^{6} \rightarrow u_{i}$ uniformly, where $\left\{u_{0}, \ldots, u_{n-1}\right\}$ is our original weak Markov basis for U. If some $u \in U$ had an oscillation of length $n+1$ then so too would u^{ε} for $\varepsilon>0$ sufficiently small. But this contradicts (7); hence U is an oscillation space.
(12) Theorem. Let U be a finite dimensional linear space of continuously differentiable functions, which contains constants. Then U^{\prime}, the space of derivatives, is a $W T$-space iff U is an oscillation space.

Proof. Assume that U has dimension n; since U contains constants U^{\prime} has dimension $n-1$. Now suppose that U^{\prime} is a $W T$-space. If some $u \in U$ had an oscillation of length $n+1$, say, $x_{1}<\cdots<x_{n+1}$ such that

$$
(-1)^{i}\left(u\left(x_{i+1}\right)-u\left(x_{i}\right)\right)>0 \quad(i=1 \text { to } n),
$$

then by the mean-value theorem we could find points $x_{i}<\eta_{i}<x_{i+1}$ such that $(-1)^{i} u^{\prime}\left(\eta_{i}\right)>0\left(i=1\right.$ to n). Thus u^{\prime} has $n-1$ sign changes, contradicting the assumption that U^{\prime} is a $W T$-space. Conversely, suppose that some $u^{i} \in U^{\prime}$ has $n-1$ sign changes. Then there are points $x_{0}<\cdots<x_{n}$ such that, for some $\varepsilon= \pm 1$,

$$
\varepsilon(-1)^{i} u^{\prime}(x) \geqslant 0 \quad \text { in } \quad\left(x_{i-1}, x_{i}\right)(i=1 \text { to } n)
$$

and $u^{\prime}(x) \neq 0$ on a subinterval of each $\left(x_{i-1}, x_{i}\right)$. Hence the function

$$
u(x)=u\left(x_{0}\right)+\int_{x_{0}}^{x} u^{\prime}(t) d t \in U
$$

has an oscillation of length $n+1$ at x_{0}, \ldots, x_{n} so that U is not an oscillation space. This completes the theorem.
(13) Corollary. Let U be as in (12). Then the following are equivalent.
(1) U is an oscillation space,
(2) U has a weak Markov basis,
(3) U^{\prime} is a WT-space.

We close with an example.
(14) Example. The following example, from Zielke [3, p. 44], is of a T space with no Markov basis. It can be shown [4] that in this case no weak Markov basis exists either. We demonstrate that the space of derivatives is not a $W T$-space.

Let $\quad u_{0}(t) \equiv 1, \quad u_{1}(t)=t(1-t) \quad$ and $\quad u_{2}(t)=(1-t)\left(t^{2}-1\right) . \quad$ Then $U=s p\left\{u_{0}, u_{1}, u_{2}\right\}$ is a T-space (and hence a $W T$-space) on $[-1,1]$. Zielke proves that U contains no 2-dimensional T-space and hence has no Markov basis. We have $U^{\prime}=\left\{u_{1}^{\prime}, u_{2}^{\prime}\right\}$, where $u_{1}^{\prime}(t)=1-2 t, u_{2}^{\prime}(t)=(1-t)(1+3 t)$. If we choose $t_{1}=0, t_{2}=1 / 2$ then we get for u_{1}^{\prime} and u_{2}^{\prime}

$$
U^{\prime}\left(\begin{array}{cc}
1, & 2 \\
t_{1}, & t_{2}
\end{array}\right)=\left|\begin{array}{cc}
1 & 0 \\
1 & 5 / 4
\end{array}\right|=5 / 4>0
$$

while the choice $t_{1}=-1, t_{2}=1$ yields $\left|{ }_{-4}^{2-1}{ }_{0}^{\mathbf{1}}\right|=-4<0$. Since the determinant is a continuous function of t_{1} and t_{2}, it remains negative for $t_{1}=-1+\varepsilon, t_{2}=1-\varepsilon$ for small $\varepsilon>0$. Hence U^{\prime} has no basis that is a WTsystem on $(-1,1)$; that is, U^{\prime} is not a $W T$-space on $(-1,1)$.

References

1. R. B. Barrar and H. L. Loeb, Spline functions with free knots as the limit of varisolvent families, J. Approx. Theory 12 (1974), 70-77.
2. M. G. Krein and A. A. Nudel'man, "The Markov Moment Problem and Extremal Problems," American Mathematical Society Translations No. 50, Amer. Math. Soc., Providence, R.I., 1977.
3. R. Zielke, "Discontinuous Čebyšev Systems," Lecture Notes in Mathematics No. 707, Springer-Verlag, Berlin/New York, 1979.
4. D. Zwick, Degeneracy in WT-spaces, Preprint No. 413, Sonderforschungsbereich 72, Univ. Bonn, 1980.

[^0]: * This work was supported by the Deutsche Forschungsgemeinschaft, SFB 72.
 ${ }^{+}$Present address: Department of Mathematics, University of Vermont, Burlington, VT 05405, USA.

