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Let U be a finite dimensional linear space of continuously differentiable
functions, containing constants. We prove that U', the space of derivatives, is a
WT-space iff U has a basis {u o,'''' Un_I} that is a complete WT-system with Uo== I.

In this article we consider the problem of determining when the space of
derivatives of a WT-space is itself a WT-space. This problem is solved by
employing a concept introduced by Zielke [3, Chap. 8], that of oscillation
spaces, which we define subsequently.

Let U be a linear space of real-valued functions defined on a real interval.
We call U a WT-space (for "weak Tchebysheff") if U has a basis, a WT
system, {uo"'" Un-I} such that for all X o < ... <x n _l' det{ui(xj)li.j~o~ O. U
is a WT-space iff no element has more than n - 1 sign changes, n being the
dimension of U. If det{ul(x)}i.j~o is positive for all X o < ... < x n _ 1 then we
call {uo,...,un-tl a T-system. For these and related notions see [3].

A standard technique in dealing with continuous WT-systems is the
method of smoothing [2, p. 40]. For continuous u we form the integral

U'(t) = _1_te-(t-X)'/2., u(x) dx,
y'27re a

e > O. (1)

Then u· -+ U uniformly in (a, b) as e 1O. By extrapolating U linearly outside
la, b] and performing the integral over a slightly larger interval we can get
uniform convergence of u· in all of [a, b]. The usefulness of this technique
lies in the fact that if {u o,..., Un _ I} is a WT-system then {ug ,... , u~ _ I} is a T-
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system. Thus every continuous WT-system can be uniformly approximated
by T-systems of analytic functions.

If Uo > 0 then ug are bounded away from zero for £ :;? O. If Uo == 1 then we
may define for e >0

vg == 1, (i = I to n - I). (2)

One easily checks that vf ---4 u; uniformly as e 10, that is, if Uo == 1 then we
may approximate {uo,"" Un_I} by T-systems {v~,..., V~_l} for which v~ == I
for all £ > O.

(3) DEFINITION. {uo,••• , Un -I} is called a complete (W)T-system if
{U o,"" ud is a (W)T-system for i = 0 to n - 1.

If {uo"'" un _ d is a complete WT-system then {u~,... , U~_I} defined as in
(1) forms a complete T-system.

(4) DEFINITION. We will call a (weak) Markov basis a complete (W)T
system {U O,...,un _ 1} with uo== 1.

(5) DEFINITION. A function f is said to have an oscillation of length k if
there are points x I < ... <X k and e = ± 1 such that

(i = 1 to k - 1).

(6) DEFINITION. An n-dimensional linear space U of real-valued
functions is called an oscillation space if no U E U has an oscillation of
length n + 1.

The following theorem characterizes T-spaces that are oscillation spaces.

(7) THEOREM [3, Theorem 8.8]. If U is a T-space with constants then U
is an oscillation space iff U has a Markov basis.

In fact, one can also prove the following theorem.

(8) THEOREM. Every continuous oscillation space on [a, b1 contains
constants.

Proof, Let U be a continuous oscillation space; then U is clearly a WT
space. If 1 tt. U then by [1, Theorem 1] there is an element u E U such that
1 - u alternates n times-in other words, there are points X o < ... < x n and
e=±l such that e(-1)i(1-u(xi»=max1a •bJ ll-u(x)1 (i=O to n). But
then u has an oscillation of length n + 1 in x o,'''' x n ' a contradiction. Hence
we must conclude that 1 E U. I
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(9) THEOREM [3, Theorem 8.3]. Every n-dimensional oscillation space
with constants contains an (n - 1)-dimensional oscillation space with
constants.

(10) COROLLARY. Every continuous oscillation space has a weak
Markov basis.

Proof This follows directly from the previous two theorems. I
We can now prove our first characterization theorem, about oscillation

spaces.

(11) THEOREM. A finite dimensional linear space of continuous, real
valued functions is an oscillation space iff it has a weak Markov basis.

Proof If U is an oscillation space then (10) implies that U has· a weak
Markov basis. Conversely, suppose that U has such a basis. We may then
smooth and form the function vf as in (2). For each e > 0, {v~,... , v:_d is
then a Markov basis and vf-",u i uniformly, where {UO, ...,un_tl is our
original weak Markov basis for U. If some u E U had an oscillation of length
n + 1 then so too would u· for e >0 sufficiently small. But this contradicts
(7); hence U is an oscillation space. I

(12) THEOREM. Let U be a finite dimensional linear space of
continuously differentiable functions, which contains constants. Then U', the
space of derivatives, is a WT-space iff U is an oscillation space.

Proof Assume that U has dimension n; since U contains constants U'
has dimension n - 1. Now suppose that U' is a WT-space. If some u E U
had an oscillation of length n + I, say, Xl < .,. <X n + 1 such that

(i = 1 to n),

then by the mean-value theorem we could find points Xi < 11i <X i + I such that
(_I)i U'(11i) > 0 (i = 1 to n). Thus u' has n - 1 sign changes, contradicting
the assumption that U' is a WT-space. Conversely, suppose that some
u' E U' has n - 1 sign changes. Then there are points X o < ... < x n such
that, for some e = ± 1,

e(-I)i u'(x) ~ 0 in (x i _l'x;)(i=lton)

and u'(x) *0 on a subinterval of each (X i _1' Xi)' Hence the function

u(X) = u(xo) +r u'(t) dt E U
Xo
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has an oscillation of length n + 1 at xo,"" xn so that V is not an oscillation
space. This completes the theorem. I

(13) COROLLARY. Let V be as in (12). Then the following are
equivalent.

(1) V is an oscillation space,

(2) V has a weak Markov basis,

(3) V' is a WT-space.

We close with an example.

(14) EXAMPLE. The following example, from Zielke [3, p. 44], is of a T
space with no Markov basis. It can be shown [4] that in this case no weak
Markov basis exists either. We demonstrate that the space of derivatives is
not a WT-space.

Let uo(t) == 1, ul(t) = t(I - t) and u2(t) = (l - t)(t 2- 1). Then
V=sp{uo,u l ,u21 is a T-space (and hence a WT-space) on [-1,1]. Zielke
proves that V contains no 2-dimensional T-space and hence has no Markov
basis. We have V' = {u;, u~}, where u;(t) = 1 - 2t, u~(t) = (1 - t)(l + 3t). If
we choose t 1 =0, t2 = 1/2 then we get for u; and u~

while the choice t.=-I, t 2 =1 yields 1_;-~1=-4<0. Since the deter
minant is a continuous function of t l and t2 , it remains negative for
t l = -I + e, t 2 = 1 - e for small e > O. Hence V' has no basis that is a WT
system on (-1, 1); that is, V' is not a WT-space on ( - I, 1). I
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