Characterization of WT-Spaces Whose Derivatives Form a WT-Space*

D. Zwick[†]

Institut für Angewandte Mathematik der Universität Bonn, 5300 Bonn. West Germany

Communicated by Oved Shisha

Received February 11, 1982

Let U be a finite dimensional linear space of continuously differentiable functions, containing constants. We prove that U', the space of derivatives, is a WT-space iff U has a basis $\{u_0, ..., u_{n-1}\}$ that is a complete WT-system with $u_0 \equiv 1$.

In this article we consider the problem of determining when the space of derivatives of a WT-space is itself a WT-space. This problem is solved by employing a concept introduced by Zielke [3, Chap. 8], that of oscillation spaces, which we define subsequently.

Let U be a linear space of real-valued functions defined on a real interval. We call U a WT-space (for "weak Tchebysheff") if U has a basis, a WT-system, $\{u_0, ..., u_{n-1}\}$ such that for all $x_0 < \cdots < x_{n-1}$, det $\{u_i(x_j)\}_{i,j=0}^{n-1} \ge 0$. U is a WT-space iff no element has more than n-1 sign changes, n being the dimension of U. If det $\{u_i(x_j)\}_{i,j=0}^{n-1}$ is positive for all $x_0 < \cdots < x_{n-1}$ then we call $\{u_0, ..., u_{n-1}\}$ a T-system. For these and related notions see [3].

A standard technique in dealing with continuous WT-systems is the method of smoothing [2, p. 40]. For continuous u we form the integral

$$u^{\varepsilon}(t) = \frac{1}{\sqrt{2\pi\varepsilon}} \int_{a}^{b} e^{-(t-x)^{2}/2\varepsilon^{2}} u(x) \, dx, \qquad \varepsilon > 0.$$
(1)

Then $u^{\epsilon} \to u$ uniformly in (a, b) as $\epsilon \downarrow 0$. By extrapolating u linearly outside [a, b] and performing the integral over a slightly larger interval we can get uniform convergence of u^{ϵ} in all of [a, b]. The usefulness of this technique lies in the fact that if $\{u_0, ..., u_{n-1}\}$ is a WT-system then $\{u_0^{\epsilon}, ..., u_{n-1}^{\epsilon}\}$ is a T-

^{*} This work was supported by the Deutsche Forschungsgemeinschaft, SFB 72.

[†] Present address: Department of Mathematics, University of Vermont, Burlington, VT 05405, USA.

system. Thus every continuous WT-system can be uniformly approximated by T-systems of analytic functions.

If $u_0 > 0$ then u_0^{ε} are bounded away from zero for $\varepsilon \ge 0$. If $u_0 \equiv 1$ then we may define for $\varepsilon > 0$

$$v_0^{\varepsilon} \equiv 1, \qquad v_i^{\varepsilon} = u_i^{\varepsilon}/u_0^{\varepsilon} \qquad (i = 1 \text{ to } n-1).$$
 (2)

One easily checks that $v_i^{\varepsilon} \rightarrow u_i$ uniformly as $\varepsilon \downarrow 0$, that is, if $u_0 \equiv 1$ then we may approximate $\{u_0, ..., u_{n-1}\}$ by *T*-systems $\{v_0^{\varepsilon}, ..., v_{n-1}^{\varepsilon}\}$ for which $v_0^{\varepsilon} \equiv 1$ for all $\varepsilon > 0$.

(3) DEFINITION. $\{u_0, ..., u_{n-1}\}$ is called a *complete* (W)T-system if $\{u_0, ..., u_i\}$ is a (W)T-system for i = 0 to n - 1.

If $\{u_0, ..., u_{n-1}\}$ is a complete WT-system then $\{u_0^{\varepsilon}, ..., u_{n-1}^{\varepsilon}\}$ defined as in (1) forms a complete T-system.

(4) DEFINITION. We will call a (weak) Markov basis a complete (W)T-system $\{u_0, ..., u_{n-1}\}$ with $u_0 \equiv 1$.

(5) DEFINITION. A function f is said to have an oscillation of length k if there are points $x_1 < \cdots < x_k$ and $\varepsilon = \pm 1$ such that

$$\varepsilon(-1)^{i}(f(x_{i+1}) - f(x_{i})) > 0$$
 $(i = 1 \text{ to } k - 1).$

(6) DEFINITION. An *n*-dimensional linear space U of real-valued functions is called an *oscillation space* if no $u \in U$ has an oscillation of length n + 1.

The following theorem characterizes T-spaces that are oscillation spaces.

(7) THEOREM [3, Theorem 8.8]. If U is a T-space with constants then U is an oscillation space iff U has a Markov basis.

In fact, one can also prove the following theorem.

(8) THEOREM. Every continuous oscillation space on [a, b] contains constants.

Proof. Let U be a continuous oscillation space; then U is clearly a WTspace. If $1 \notin U$ then by [1, Theorem 1] there is an element $u \in U$ such that 1 - u alternates n times—in other words, there are points $x_0 < \cdots < x_n$ and $\varepsilon = \pm 1$ such that $\varepsilon(-1)^i(1 - u(x_i)) = \max_{\{a,b\}} |1 - u(x)|$ (i = 0 to n). But then u has an oscillation of length n + 1 in x_0, \dots, x_n , a contradiction. Hence we must conclude that $1 \in U$.

D. ZWICK

(9) THEOREM [3, Theorem 8.3]. Every n-dimensional oscillation space with constants contains an (n-1)-dimensional oscillation space with constants.

(10) COROLLARY. Every continuous oscillation space has a weak Markov basis.

Proof. This follows directly from the previous two theorems.

We can now prove our first characterization theorem, about oscillation spaces.

(11) THEOREM. A finite dimensional linear space of continuous, realvalued functions is an oscillation space iff it has a weak Markov basis.

Proof. If U is an oscillation space then (10) implies that U has a weak Markov basis. Conversely, suppose that U has such a basis. We may then smooth and form the function v_i^{ε} as in (2). For each $\varepsilon > 0$, $\{v_0^{\varepsilon}, ..., v_{n-1}^{\varepsilon}\}$ is then a Markov basis and $v_i^{\varepsilon} \rightarrow u_i$ uniformly, where $\{u_0, ..., u_{n-1}\}$ is our original weak Markov basis for U. If some $u \in U$ had an oscillation of length n + 1 then so too would u^{ε} for $\varepsilon > 0$ sufficiently small. But this contradicts (7); hence U is an oscillation space.

(12) THEOREM. Let U be a finite dimensional linear space of continuously differentiable functions, which contains constants. Then U', the space of derivatives, is a WT-space iff U is an oscillation space.

Proof. Assume that U has dimension n; since U contains constants U' has dimension n-1. Now suppose that U' is a WT-space. If some $u \in U$ had an oscillation of length n+1, say, $x_1 < \cdots < x_{n+1}$ such that

$$(-1)^{i}(u(x_{i+1}) - u(x_{i})) > 0$$
 $(i = 1 \text{ to } n),$

then by the mean-value theorem we could find points $x_i < \eta_i < x_{i+1}$ such that $(-1)^i u'(\eta_i) > 0$ (i = 1 to n). Thus u' has n-1 sign changes, contradicting the assumption that U' is a WT-space. Conversely, suppose that some $u' \in U'$ has n-1 sign changes. Then there are points $x_0 < \cdots < x_n$ such that, for some $\varepsilon = \pm 1$,

$$\varepsilon(-1)^i u'(x) \ge 0$$
 in (x_{i-1}, x_i) $(i = 1 \text{ to } n)$

and $u'(x) \neq 0$ on a subinterval of each (x_{i-1}, x_i) . Hence the function

$$u(x) = u(x_0) + \int_{x_0}^x u'(t) dt \in U$$

has an oscillation of length n + 1 at $x_0, ..., x_n$ so that U is not an oscillation space. This completes the theorem.

(13) COROLLARY. Let U be as in (12). Then the following are equivalent.

- (1) U is an oscillation space,
- (2) U has a weak Markov basis,
- (3) U' is a WT-space.

We close with an example.

(14) EXAMPLE. The following example, from Zielke [3, p. 44], is of a T-space with no Markov basis. It can be shown [4] that in this case no weak Markov basis exists either. We demonstrate that the space of derivatives is not a WT-space.

Let $u_0(t) \equiv 1$, $u_1(t) = t(1-t)$ and $u_2(t) = (1-t)(t^2-1)$. Then $U = sp\{u_0, u_1, u_2\}$ is a T-space (and hence a WT-space) on [-1, 1]. Zielke proves that U contains no 2-dimensional T-space and hence has no Markov basis. We have $U' = \{u'_1, u'_2\}$, where $u'_1(t) = 1 - 2t$, $u'_2(t) = (1-t)(1+3t)$. If we choose $t_1 = 0$, $t_2 = 1/2$ then we get for u'_1 and u'_2

$$U'\begin{pmatrix} 1 & , & 2\\ t_1 & , & t_2 \end{pmatrix} = \begin{vmatrix} 1 & 0\\ 1 & 5/4 \end{vmatrix} = 5/4 > 0,$$

while the choice $t_1 = -1$, $t_2 = 1$ yields $|_{-4}^2 - \frac{1}{0}| = -4 < 0$. Since the determinant is a continuous function of t_1 and t_2 , it remains negative for $t_1 = -1 + \varepsilon$, $t_2 = 1 - \varepsilon$ for small $\varepsilon > 0$. Hence U' has no basis that is a WT-system on (-1, 1); that is, U' is not a WT-space on (-1, 1).

References

- 1. R. B. BARRAR AND H. L. LOEB, Spline functions with free knots as the limit of varisolvent families, J. Approx. Theory 12 (1974), 70-77.
- 2. M. G. KREIN AND A. A. NUDEL'MAN, "The Markov Moment Problem and Extremal Problems," American Mathematical Society Translations No. 50, Amer. Math. Soc., Providence, R.I., 1977.
- 3. R. ZIELKE, "Discontinuous Čebyšev Systems," Lecture Notes in Mathematics No. 707, Springer-Verlag, Berlin/New York, 1979.
- 4. D. ZWICK, Degeneracy in WT-spaces, Preprint No. 413, Sonderforschungsbereich 72, Univ. Bonn, 1980.